Paperback

Currently not available.

Request this book

About the Book

Summary

Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook.
About the Technology
A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others.
About this Book
This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework.

This book is written for developers familiar with Java -- no prior experience with Mahout is assumed.

Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book.
What's Inside
  • Use group data to make individual recommendations
  • Find logical clusters within your data
  • Filter and refine with on-the-fly classification
  • Free audio and video extras

Table of Contents

  1. Meet Apache Mahout
  2. PART 1 RECOMMENDATIONS
  3. Introducing recommenders
  4. Representing recommender data
  5. Making recommendations
  6. Taking recommenders to production
  7. Distributing recommendation computations
  8. PART 2 CLUSTERING
  9. Introduction to clustering
  10. Representing data
  11. Clustering algorithms in Mahout
  12. Evaluating and improving clustering quality
  13. Taking clustering to production
  14. Real-world applications of clustering
  15. PART 3 CLASSIFICATION
  16. Introduction to classification
  17. Training a classifier
  18. Evaluating and tuning a classifier
  19. Deploying a classifier
  20. Case study: Shop It To Me

All Editions

9781935182689
Paperback, 9th Edition
ISBN13: 9781935182689
Manning, 2011

Share Your Thoughts

Your review helps others make informed decisions

Click on a star to start your review